HIGH PERFORMANCES

CONCRETE

Jean-Michel Laye Head QC – Product Development Lafarge India

© Copyright Lafarge 2010 The information contained within this document is the property of Lafarge and should not be copied and freely distributed without prior approval by Lafarge

World leader in building materials

LAFARGE

Leadership positions in all our Businesses

- World leader in Cement
- Operating in 79 countries
- Employing 84,000 people
- 2,200 industrial sites worldwide
- World No.2 in Aggregates and No.3 in Concrete
 - 620 quarries and 1,325 concrete plants in 40 countries
- Strong positions in Aggregates in France, UK, Canada, US
- Acceleration of our development in emerging markets
 - Solid positions in South Africa, Poland, Ukraine
 - India : 80 RMX plants 3.5 4 millions M3 of concrete
 - 2.2 Cr liters of admixtures

Lafarge R&D

LAFARGE

- Long term presence in Cement, Concrete, Aggregates and Gypsum explains our unique multi-disciplinary expertise
- 20 years of development of our scientific approach
- The largest research center in building materials

220 employees - 12 nationalities – 70 PhD Budget : 25 M Euros funded by 3 divisions and corporate

Building of 2.500 m² dedicated to concrete R&D

HIGH PERFORMANCES

CONCRETE

Definition of High Performance Concrete

- Compressive Strengths above 50 Mpa and up to 100 /110 Mpa
- Modulus of Elasticity above 35 / 40 Gpa

LAFARGE

- High level of Durability (Permeability / RCPT / Carbonation / Corrosion)
- Use of 2 or 3 cementitious materials
 - » Microsilica
 - » Fly ash (processed)
 - » GGBS
 - » Metakaolin
 - » Limestone filler / siliceous filler
- Use of High Water reducer admixtures
 - » at least one type of PCE
 - » and /or Poly-phosphonate type and a retarder
 - In order to achieve very low W/C, workability and slump retention AND PUMPABILITY

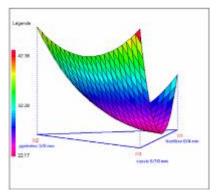
Parameters

- A granular skeleton
 - Aggregates, sand, fines, ultra-fines...
 - Particle size distribution / gradation
 - Packing density
 - + Absorption
 - + Chemical interaction

(clays, chlorides, reactive silica, organic elements,...)

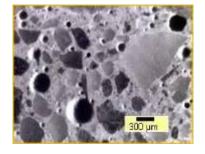
- A paste
 - Binder (cement + additions), water, air and admixtures
 - Particle size distribution
 - Packing density
 - Effective water
 - Binder quantities and interactions
 - Air content
 - Admixtures

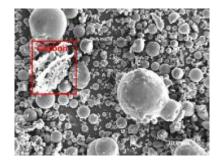
Performances

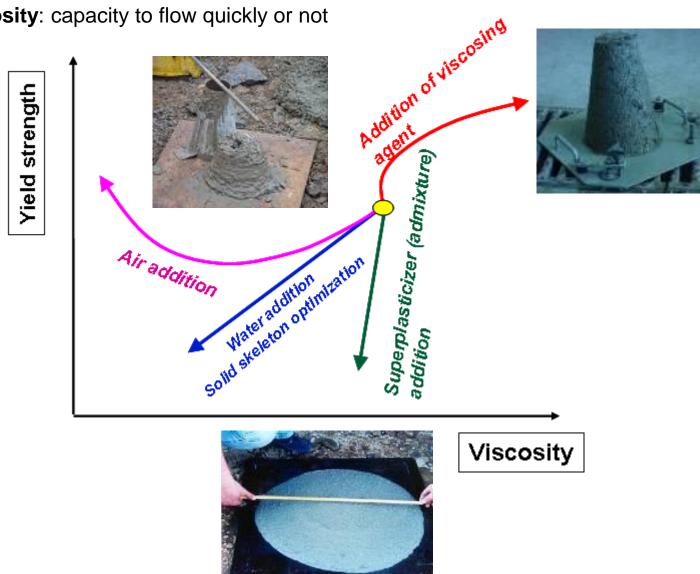


- Rheology
 - Packing of solid particles
 - Paste content
 - Water content
 - Admixtures

Strength (early age and final)

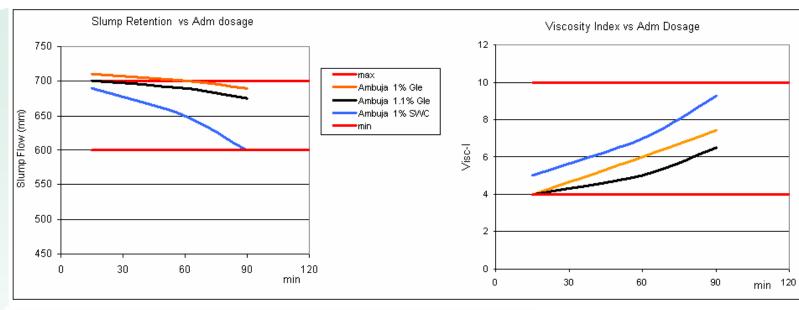

- Binder composition
- Water-to-binder ratio
- Packing of solid particles
- Durability
 - Binder composition
 - Water-to-binder ratio
 - Air entrained

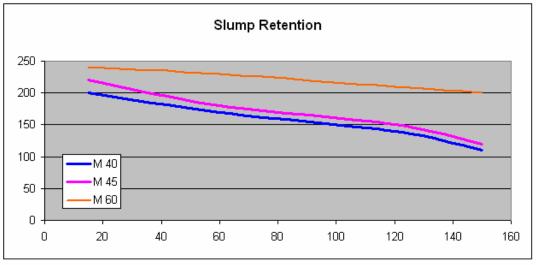




Workability

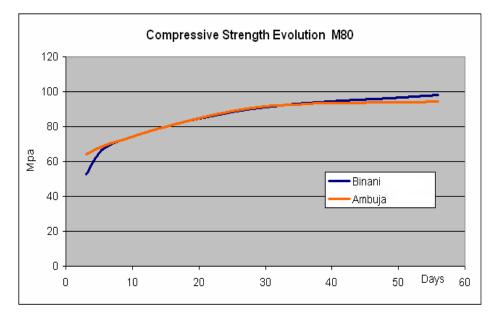
LAFARGE


- Yield stress : indication on the capacity to maintain its own shape
- Viscosity: capacity to flow quickly or not



Workability

Slump / Slump flow and Viscosity



These properties are strongly impacted by the type of chemicals admixtures , today mostly PCE or blend of different types of PCE / or PP

Mechanical strength

LAFARGE

- Mechanical strength depends on
 - Aggregates strengths
 - Paste strength
 - quantity of voids (bubbles and porosity)
 - quality of the hydrates and their cohesion)
 - Quality of the paste/aggregate interface
 - (" interfacial transition zone": ITZ)
 - Packing density of the entire granular skeleton (from aggregates to ultra-fines)

High performances concrete

WORLD ONE PROJECT - Lower Parel – MUMBAI

- Over 120 stories, 1500 feet

AFARGE

- Architects Pei Cobb Freed & Partners
- Structural consultants LERA
- 250,000 cubic meters of concrete
- 35,000 metric tons of steel rebar
- 40,000 sq m of glass
- 14 million man hours.
- 18 elevators travelling at upto 8 metres/sec

Rs. 2,000 crores (USD 440 million)

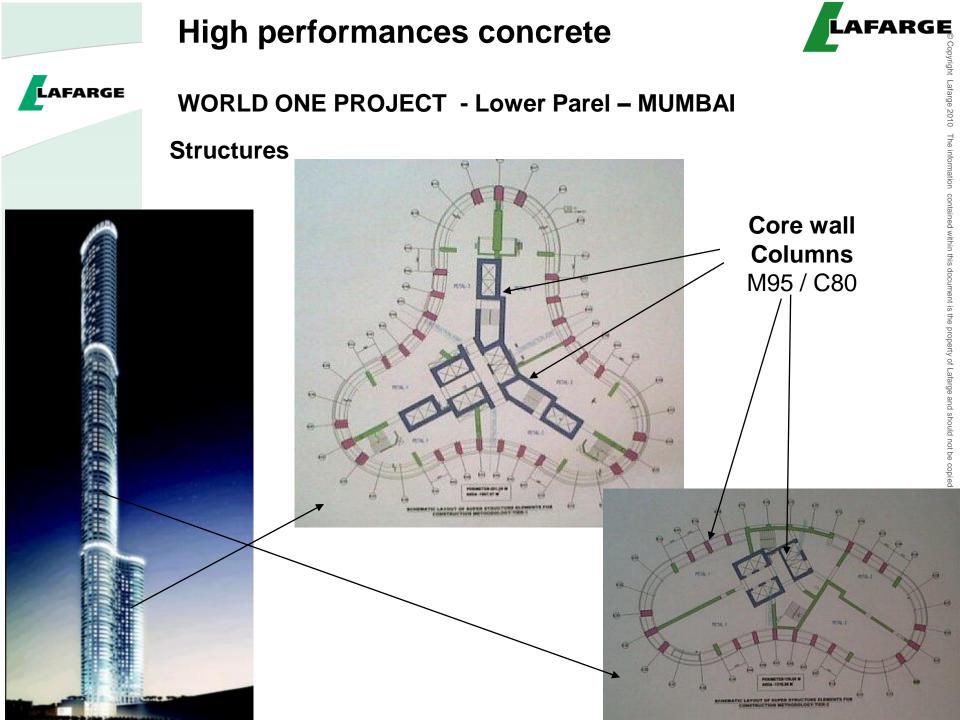
High performances concrete

LAFARGE

WORLD ONE PROJECT - Lower Parel – MUMBAI

RAFT FONDATION ON PILES (close to 5 meter)

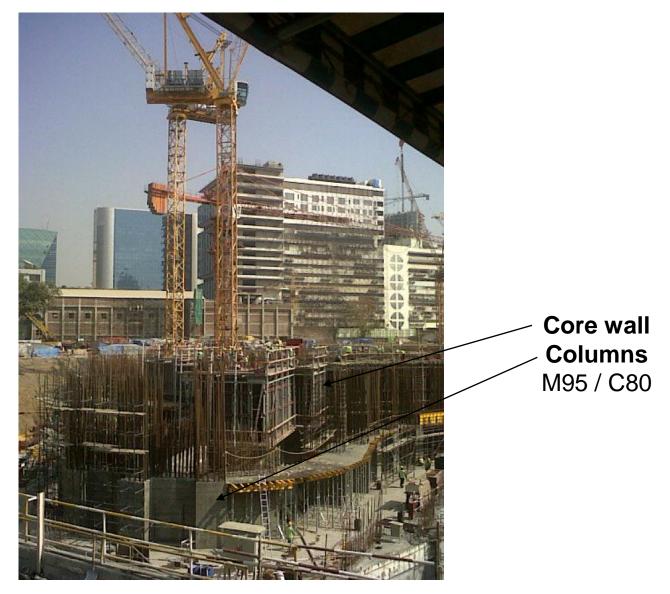
10 000 M3 of M40 SCC GGBS + OPC 5000 M3 of M60 SCC GGBS + OPC


Constraints from specifications / execution

Max core temperature = 72 deg

Self compacting

Durability



WORLD ONE PROJECT - Lower Parel – MUMBAI

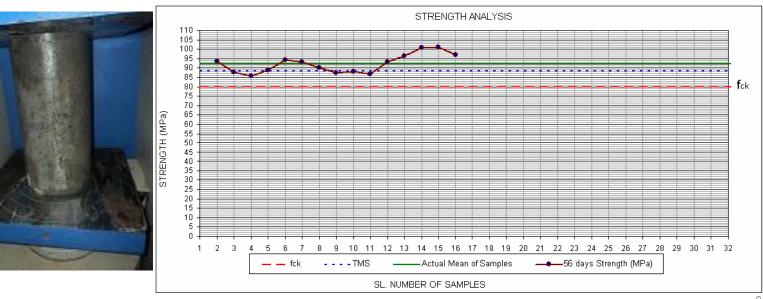
WORLD ONE PROJECT - Lower Parel – MUMBAI

WORLD ONE PROJECT - Lower Parel – MUMBAI

Fresh Performances of the M95/C80

Very close to self compacting performance but high viscosity

Slump retention > 2.5 hours


Pumpability

Segregation index below 5% (EFNARC)

High performances concrete

LAFARGE

WORLD ONE PROJECT - Lower Parel – MUMBAI Performances of the M95/C80

OBSERVATIONS FROM STATISTICAL ANALYSIS

f _{ok}	80	Mean	92.3	Estbd. Std. Dev.	4.9
Probability of getting less strength than 80 MPa =					0.657%
Calculated Proportion of low results =					1 in 152
Calculated Value of Statistical Constant (t) =					2.48

Assumed Standard Deviation =	5.0
Accepted Proportion of low results =	1 in 20
Statistical Constant (t) taken for Calculation =	1.65

HIGH PERFORMANCES

CONCRETE

Jean-Michel Laye Head QC – Product Development Lafarge India